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ABSTRACT
The main purpose of this study is to build a Computational model based on ModelF-
est dataset which is able to predict contrast sensitivity while it benefits from simplic-
ity, efficiency and accuracy, which makes it suitable for hardware implementation, 
practical uses, online tests, real-time processes, an improved Standard Observer and 
retina prostheses. It encompasses several components, and in particular, frequency 
dependent aperture effect (FDAE) which is used for the first time on this dataset, 
which made the model more accurate and closer to reality. Shortcomings of previous 
models and the necessity of existence of FDAE for more accuracy led us to develop a 
new model based on Wavelet Transform that gives us the advantage of speed and the 
capability to process each frequency channels output. Considering our goal for build-
ing an efficient model, we introduce a new formula for modeling contrast sensitivity 
function, which generates lower RMS error and better timing performance. Eventu-
ally, this new model leads to having as yet lowest RMS error and solving the problem 
of long execution time of prior models and reduces them by almost a factor of twenty.

Keywords: visual system modeling, spatial vision, contrast detection, wavelet filter 
bank, multi-channel model, ModelFest, frequency dependent aperture effect.

INTRODUCTION

Spatial sensitivity modeling

Human visual system (HVS) is the most im-
portant and complicated sense of human body 
and it is also known as an optimal image process-
ing system [3]. As a result, it has been the aim 
of numerous researches for so many years. For 
instance, the proposal of spatial-frequency selec-
tive mechanisms in vision is 50 years old. These 
researches were done in diverse fields, including 
spatial contrast detection, retina modeling, eye 
movements, etc.

Spatial contrast sensitivity as Watson & Ahu-
mada [43] defined, is the ability to see alteration 
of light intensity in spatial patterns. Since spatial 

contrast sensitivity is the first stage of seeing, it 
has been the focus of many studies. One of the 
earliest studies was Ricco’s law [15] which tried 
to describe the relation between stimulus area and 
contrast threshold and summation rule within an 
area. Later, by introducing contrast sensitivity 
function (CSF) [7], new models based on spa-
tial filters were developed. The rule of CSF in 
modelling of HVS cannot be overlooked [28], 
and this great importance leads to both invention 
of several methods to measure human CSF [24] 
and divers investigations into different aspects of 
Contrast sensitivity function [22]. In 1969, Blake-
more & Campbell [5] developed the idea of mul-
tiple spatial filters instead of single one. In addi-
tion, there were studies on variation of sensitivity 
with orientation [4] and eccentricity [27].
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Although these studies tried to investigate 
HVS operation in one of these aspects, lack of 
a more general model which incorporates all 
or some of these properties was introduced by 
Watson [36], at the beginning of 21st century, 
to present his model which includes CSF, fre-
quency channels and pooling. Later on, anoth-
er improved model was introduced by Watson 
& Ahumada [43]. We will return to this model 
for more investigation in latter sections. 

Designing and gathering of ModelFest 
data, helped scientists in the area of contrast 
sensitivity to design and validate their models 
using the same dataset; hence, we used this da-
taset to develop our model and compared our 
results with previous studies.

ModelFest dataset and previous analyses

ModelFest dataset consists of 43 grey scale 
stimuli (Figure 1) and Stimuli’s properties are 
comprehensively described in [43]. It was 
gathered in two phases, first for nine observ-
ers and second for seven more and four trials 
for each observer. Since there is a detailed ex-
planation of ModelFest dataset in [43], here 
we only point out their result of their calcu-
lation on dataset descriptive statistics which 
implies that, by assuming the homogeneity of 
variances, using the overall average over ob-
servers and trials for each stimulus for opti-
mizing a model, the lowest achievable RMS 
error is 0.56 dB.

Some of the first studies on this dataset 
was conducted in [30], [34] and [8] but none 
of them used all dataset to develop a single 
model. In 2000, Watson used ModelFest phase 
one data to develop his model which consists 
of three parts, CSF filter followed by frequen-
cy channels and Minkowski pooling [36]. In 
that study, Watson tried different kinds of filter 
bank including Gabor channels, discrete cosine 
transform (DCT), and no-channel frequency 
channels part of model. This study suggested 
that DCT has poor performance and using Ga-
bor channels will bring about a better result. 

Watson [36] study was followed by Watson 
& Ahumada [43]; this investigation presented 
a more general model, including CSF, oblique 
effect, frequency independent aperture effect 
(FIAE), frequency channels and Minkows-
ki polling. In [43], the effect of a number of 

CSF filters, and FIAE and oblique effect on 
RMS error was investigated while the Gabor 
channels were used. The result was that their 
model reached 0.79 dB RMS error, which is a 
good result.

More recently, another model was pro-
posed by Bradley, Adams, & Geisler [6], and 
it reaches 1.09 dB RMS error on ModelFest 
dataset. Although this model of detectability is 
more physiological in inspiration and accounts 
for detectability across the entire visual field, 
which our model can easily be generalized to 
do so, as it will be discussed later, its advan-
tages pale in comparison with its poor timing 
performance in practical uses. 

Present analysis

In this study, we aim to develop a more ef-
ficient and accurate model based on Watson & 
Ahumada [43] model which is able to predict 
human contrast sensitivity. The uses of such a 
model is beyond count; for instance, this model 
can be applied to myriad problems of display 
measurement and inspection such as measure-
ment of motion blur and mura [38, 41]. Fur-
ther, this model can be used in machine vision 
applications, for example, Feature detection 
and letter identification [25, 42], and the more 
practical one which is predicting visibility of 
aircrafts [37] or even in future retina implants. 
Thus, it is obvious that a more efficient model 
that benefits from shorter execution time, low-
er complexity and fewer computations, which 
leads to smaller and lighter and less expensive 
hardware for implementing them, will be defi-
nitely desirable and beneficial. Furthermore, 
such an efficient model can be used in online 
tests and real-time processes. On the basis of 
Watson & Ahumada article [43], complex and 
time consuming channel type used in their 
model, termed as Gabor filters, made them 
omit the channels for practical uses and further 
investigations, but the fact remains that this 
omission not only increased the RMS error but 
also prevent us from benefiting from the exis-
tence of FDAE. After checking the effects of 
various types of channels on RMS error and 
execution time, the wavelet channels were 
chosen. The advantage of channels’ existence 
helps us introduce FDAE which culminated in 
the as yet lowest RMS error of about 0.68 dB. 
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Fig. 1. 43 Stimuli of ModelFest dataset. These images were displayed in monochromic and the index number 
was not shown in display and their dimensions was 2.133×2.133 degrees [39]

Fig. 2. Model structure composed of six parts
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MODEL STRUCTURE

In this report, we used a model comprised of 
six parts including Luminance to Contrast Image, 
CSF Filter, Oblique Effect, Aperture Effect and 
Pooling (Figure 2). In the following sections, each 
component will be briefly discussed.

Model Input and Output

An input of model is one of the digital gray-
scale images of ModelFest dataset. Each image 
has 256 pixels width and length. Output of model 
is a real number that is the contrast threshold for 
that input image. 

Contrast Image

The first stage is to converted each image to a 
contrast image that only contains the differences 
between pixels’ intensity. This stage is similar to 
what happens in the retina when light is emitted 
on an on-center off-surround or off-center on-sur-
round ganglion cells’ receptive field (GCRF). In 
those GCRFs the response of the center and sur-
round are subtracted from each other and ganglion 
cells only transmit differences, which is proved to 
be a more effective and optimized way than trans-
mitting the exact intensity [18]. A contrast image 
will be then produced when the value of 128 , the 
nominal mean of intensities, is subtracted from 
each pixel intensity and then divide by 127 [36].

Contrast Sensitivity Filter (CSF)

After each stimulus is converted to contrast 
image, it is convolved by CSF like filter. This 
operation will be done by circular convolution’s 
equivalence in frequency domain. Here we as-

sume that Gaussian envelope of stimuli will de-
crease or even omit the border effect caused by 
circular convolution. Figure 3 shows an example 
of CSF filter, in which filter gain decreases in both 
high and low frequencies similar to human con-
trast sensitivity function.

Oblique Effect

Based on Berkley data [4], Watson & Ahu-
mada modeled the oblique effect with the equa-
tion below, by the assumption of sinusoidal varia-
tion, and therefore, the following equation was 
obtained (Equation 1)[43]. 

(1)

In this equation γ = 3.48  cycles/degree is the 
frequency where decline in sensitivity starts and   
λ = 13.57 cycles/degree is the rate of decline per 
frequency. This effect is applied to the model as a 
filter in frequency domain (Figure 4).

Aperture Effect

This effect mainly introduced in 1981 [27]. it 
implies that sensitivity declines as a function of ec-
centricity. This phenomenon depends on two fac-
tors, first the distance from fixation point and sec-
ond the frequency which the stimulus is emitted at. 
Traditionally, a Gaussian function is used to model 
this phenomenon, however, other functions such as 
witch’s hat and samurai hat was proposed in recent 
years [2]. Given the quality of our model’s fits we 
did not use these functions to avoid more complex-
ity. The Gaussian function will apply to the model 
as a scaling function in spatial domain. 

Fig. 3. Contrast Sensitivity Filter as a function of 
spatial frequency. Sensitivity gain declines at low and 

high frequencies
Fig. 4. Oblique Effect Filter implemented as a filter in 

frequency domain
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where:  σ is called the size of aperture and r is the 
distance from fixation point. 

In this study, we attempted to model FDAE 
for the first time on ModelFest dataset, while Pre-
vious analyses have only modeled the FIAE us-
ing a solitary Gaussian function. Here, we used 
multiple Gaussians in different frequency chan-
nels with different sizes that are free to vary. The 
existence of FDAE will lead to fewer errors and 
for implementing its efficient frequency channels 
are needed. These Gaussians are applied with 
their centers aligned with the center of images. 
This is because of the assumption that observer’s 
eye was fixated at the center of targets. 

Frequency Channels

Based on physiological and psychophysical 
evidences, it is proven that HVS decomposes in-
put stimuli to parallel frequency channels each 
has a distinct frequency band. Thus, the mainstay 
of the model is the channels. This part was in-
cluded in previous analyses like [36] and [43]. 

In this article, we scrutinize the effect of six 
different types of channels five of which includ-
ing wavelet filter bank, wavelet packets, real and 
complex dual tree complex wavelet transform 
(DT-CWT), and Berkeley Wavelet Transform 
(BWT) [44] were used for the first time. Another 
Channel’s type termed as Gabor filters, which is 
known as the best model before our investigation, 
is simulated along with them, for comparison. 
Gabor filters’ parameters are mentioned in Table 
1 which are the same as what Watson & Ahuma-
da used for their channels [43]. it is important to 
point out that while the Gabor function is very 
popular, other filter shapes have been considered 
too. A very recent paper introduced the Gaussian 

derivate filter as a suitable model [14], but since 
it was not based on ModelFest dataset, we did not 
include its result in this study.

Pooling 

The last part of the model is responsible for 
converting 2D patterns into a real number, indi-
cating the contrast threshold. Because of its oper-
ation, it is named as the pooling stage. This stage 
is related to image quality assessment field [35] 
and although there are divers methods to use for 
this purpose [11, 23, 46], here we used Minkows-
ki pooling method which has been used in nu-
merous previous studies [6, 36, 38, 41, 43]. This 
method is inspired by summation property of V1 
cells [16, 27, 40]. Equation 4 shows Minkowski 
Pooling formula. 

(3)

Here cT  is the contrast threshold and rx,y is the 
processed pixel. β is the summation exponent and 
px, py are pixel length and width in degrees [43]. 
Determining R = 1 as the threshold of detection,  
CT can be calculated from equation 5.

(4)

When frequency channels exist, we use the 
subsequent equation for pooling the channels 
contrast thresholds.

(5)

Here CTn  is contrast threshold of each of the 
channels and N is number of the channels. The 
advantage of using Minkowski pooling is that it 
incorporates peak detection model (β = ∞) [40], 
probability summation (β = 3)  and energy sum-
mation (β = 2). It should also be noted that in the 
case of the discredited high threshold model of 
contrast detection, the exponent depends on the 
slope of the psychometric function, and beta be-
tween 2 and 4 is probably reasonable in many 
cases.

 It should also be noted that the psychromet-
ric function’s shape might be diagnostic for some 
of the contrast detection models. Steeping of this 
function can be associated with uncertainty, but 

Table 1. Gabor Channels’ Parameters [43]

Number of frequencies 11

Number of orientations 4

Number of phases 2

Bandwidth (octaves) 1.4

Highest center frequency (cycles/degree) 30

Lowest center frequency (cycles/degree) 0.9375

Frequency spacing (octaves) 0.5

Orientation spacing (degrees) 45

Pyramid sampling Yes
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the fact remains that good estimation can be ac-
quired by several threshold runs, and single run 
will not provide enough data for estimating this 
function. Thus, we simulated our model for 10 
times and 5-fold cross validation, as it will be ex-
plained later.

FREQUENCY CHANNELS

 In this section we will describe various types 
of channels used in this study. As it was men-
tioned above, there are physiological evidences 
that HVS uses several frequency channels for 
stimuli processing. Thus, this kind of process-
ing can be implemented using a component that 
decomposes its input to multi frequency bands. 
Filter banks are used for such a process and each 
filter bank can be designed by one of the math-
ematical transforms, such as Discrete Fourier 
transform filters array, known as Gabor filters 
[36], short time discrete Fourier transform (ST-
DFT), discrete cosine transform (DCT) and dis-
crete wavelet transform (DWT). 

The results of Watson investigations on Ga-
bor filters and DCT implied that DCT filter bank 
has frustrating performance, compared to Gabor 
filters with the error more than twice as high[36]. 
Here we used wavelet transform as the main 
mathematical tool for creating filter banks. Wave-
let packets, real and complex dual tree complex 
wavelet transform (DT-CWT), and Berkeley 
Wavelet Transform are different derivations of a 
wavelet transform. 

Wavelet Filter bank

Wavelet filter bank or discrete wavelet trans-
form is a more recent concept compared to Fouri-
er transform and it was introduced by Morlet due 
to time-frequency resolution deficiencies of short 
time Fourier transform [26]. As we mentioned 
earlier, we used different types of wavelet filter 
bank and since wavelet transform is a well-known 
mathematical transform, here we only briefly ex-
plain the distinctions between these types.

The first type is the conventional wavelet fil-
ter bank or, in other words, discrete wavelet trans-
form that divide frequency bands by first halving 
the whole frequency band and then continue di-
viding it by just halving the lower band and leave 
the higher band intact [20]. As a result, focus of 
DWT is on low frequencies. The second type of 

filter bank that we used is wavelet packet trans-
form, which divides frequency bands in the way 
that not only does it halve the lower band, but it 
also halves higher bands during decomposition. 
Wavelet packets transform divides high and low 
frequencies in the same way that DWT divides 
low frequencies hence using wavelet packets 
leads to a better control over partitioning time 
frequency plane [12]. 

The third and fourth filter banks which are 
called Real DT-CWT (RDT-CWT) and Complex 
DT-CWT (CDT-CWT) are much newer than pre-
vious ones. We can describe these transforms as 
forms of DWT that uses dual tree of wavelet fil-
ters to obtain their real and imaginary parts for 
their complex output coefficients. Unlike previ-
ous ones, these two focus on orientation rather 
than frequencies. Real DT-CWT has six direc-
tional wavelets in six distinct directions. Com-
plex DT-CWT has the same six distinct direction-
al wavelets, except in this kind of DT-CWT there 
are two phases for each direction by using twice 
as many wavelets as the Real type.

The last derivation of wavelet transform we 
used was BWT. BWT is a two-dimensional triad-
ic wavelet transform, and it is composed of four 
pairs of mother wavelets, at four orientations. In 
each pair one wavelet has even symmetry and the 
other has odd symmetry. This wavelet transform 
shares some of the features of V1 neurons’ re-
ceptive filed, and by scaling and transition of the 
whole set, the wavelet constitutes an orthogonal 
basis [44].

Gabor Channels

The sixth type of frequency channels that we 
simulated is Gabor channels. Since we utilized 
these frequency channels with the same param-
eters (Table 1) as [36] and [43], we will not con-
tinue describing it in this article, and we suggest 
reading reference articles for more information.

CONTRAST SENSITIVITY FILTERS (CSF)

In this part, we will introduce the CSFs which 
we used in this research. As it was pointed out 
previously here, we mainly used three types of 
CSFs namely, Log-Sensitivity Interpolation (LSI, 
[36]), HPmH ([43]) and the last one, which we 
introduced, termed as DoS (Difference of Sig-
moids). CSFs are somehow band pass filters, and 
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therefore they can be built by subtracting two low 
pass filters, as it was done in HPmH and DoS. Fil-
tering operations were done by using frequency 
equivalence of circular convolution. Border ef-
fect can be ignored by considering the Gaussian 
envelopes of stimuli and influence aperture effect 
on processed image. 

Log-sensitivity Interpolation

This CSF, introduced by [36], has 11 free pa-
rameters. 10 of these parameters are for 10 gains 
at stimuli 1-10 frequencies. Additionally, an extra 
parameter was assigned to frequency 0. For the 
purpose of limiting the interpolation, the gain at 
the last frequency (256 Cycles/degree) was fixed 
to –50 dB.

HPmH

This CSF was introduced by Watson & Ahu-
mada [43] based on HPmG filter that was sug-
gested by [29] and it uses the difference of two 
secants, each of which serves as a low pass filter. 
This CSF has 5 parameters to be assigned.

(6)

In this equation ƒ0 and ƒ1 scale frequencies in 
high and low frequency lobes respectively.   indi-
cates the effect of low frequency lobe on the high 
one and p gives us more flexibility. 

DoS

We introduced this function as the difference 
of two sigmoid functions which each of them 
implements a low pass filter, and by subtracting 
them from each other a band pass filter can be 
generated. The chief reason why we introduced 
this CSF is because it has 2 less exponent func-
tion than HPmH, which leads to less computa-
tions and contributes to better execution time. 
This filter has 7 free parameters. 

(7)

In this formula g is the gain of the whole filter,  
b1 & b2, a1 & a2  and c1 & c2 are the weights, scales 
and shifts of sigmoid functions at high and low 
frequency lobes, respectively. 

Other CSFs

As we wanted to compare our CSF with con-
ventional filters we have simulated 7 more CSFs 
including DoG, MS, HmH, HmG, LP, EmG, 
YQM, HPmG in two conditions. First, when the 
channels exist, and second when they do not. All 
these CSFs are introduced in [43].

RESULTS

Model implementation and Optimization

We used MATLAB® programming language 
for implementing our model. Parameters of each 
configuration of model were estimated by using 
five MATLAB® built-in methods including Fmin-
search, Fminunc, pattern search algorithm, ge-
netic algorithm and Particle Swarm. Although no 
optimization algorithm can guarantee that it can 
find the global minimum, we utilized the hybrid 
method of Fminunc plus Fminsearch for find-
ing the lowest minimum. These results must be 
considered as the upper bound of attainable mini-
mum. Each optimization was done for at least ten 
times, to check the consistency of answers. 

Considering the fact that Gaussian envelopes 
of stimuli can minimize the border effect, we 
used circular convolution for implementing all 
filtering operations.

We validated our model using the RMS er-
ror (RMSE) in dBs. Since this method of valida-
tion (RMSE) is completely prone to overfitting, 
here we used 5-fold cross validation for training 
our model. Although here we assumed that the 
results of prior studies were obtained through the 
same process, since nothing is mentioned in their 
articles, there is no evidence to give credence to 
this assumption [6, 43]. Thus, their results are not 
without reservations about the performance of 
their model when cross validation is used. One of 
the most challenging tasks regarding cross vali-
dation was selecting the members of folds. Due 
to the scarcity of stimuli and similarities of some 
of them (for instance, Stimuli number 1-14), we 
separate the data set into 4 distinct group (first 
group: 1-21, 36-37, second group: 22-25, 32-33, 
38-39, third group: 26-29,30 and forth group: rest 
of stimuli) base on each stimulus’ trait. Then, the 
members of each fold for each irritation (here we 
chose 10 irritations) will be randomly selected 
from these 4 groups in a way that each fold have 
at least one stimulus of each group. After train-
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ing the model on 4 of these folds, the model was 
tested on the hold-out one. Using equation 8 the 
error for training and testing stage was calculat-
ed. Therefore, all the following reported results 
are the results of the model that its parameters 
are equal to the average of obtained parameters 
of 5-fold cross validation with 10 irritations of 
randomly selecting fold members. 

(8)

In this equation Cj is the threshold from data-
set and Pj is the model predicted value. Note that 
both of these values must be used in dBs. J is the 
number of stimuli of hold-out fold in testing stage 
and all other folds in training.

Moreover, we used autocorrelation test for 
further validation of our model predictions, by 
assuming that our model is a zero order moving 
average (MA (0)) model. Based on this method, a 
suitable model with unbiased parameters estima-
tion is obtained if the prediction errors are uncor-
related. Figure 5 shows the prediction errors can 
approximately be deemed as uncorrelated with 
95% confidence bound, and therefore, our estima-
tion is nearly unbiased.

Optimized model Predictions

Here we illustrate the performance of model 
by showing the predicted values along with da-
taset’s thresholds. The black line indicates the 
error for each stimulus. Figure 6A shows the 
prediction and errors when no channels exist, 
and Figure 6B displays the same variables when 

Wavelet channels are used. As it can be seen in 
Figure 6, there is a substantial change in error 
for two stimuli of 35 and 43 compared to the 
others when channels are added to the model, we 
will talk about this later on. 

Contrast Sensitivity Functions

In this section we talk about the effect of differ-
ent types of CSFs on RMS error. For this purpose, 
we compared our introduced CSF with 10 conven-
tional CSFs. As it is shown in Figure 7, the first three 
CSFs from left, which are used for further investiga-
tions, are the best CSFs amongst all the others. This 
investigation was done in two configurations, no 
channels (Fig. 7A) and wavelet channels (Fig. 7B). 
It is worth noting that here we used FIAE and later 
we will add FDAE for more examinations.

It is also notable that using the channels causes 
the DoS to have lower error, compared to HPmH 
which performs better in no channel configuration. 
Figure 8 shows three types of CSFs we mostly used 
in this article. It is evident that all these three CSFs 
are similar to a typical human contrast sensitivity 
function [31, 45], and it proves that our new model 

Fig. 5. Autocorrelation test of prediction errors

Fig. 6. Optimized model predictions (red dots) along-
side thresholds (Blue dashed line) and errors (black 

solid line) for each stimulus. (A) is the predicted 
values when no frequency channels exist, (B) shows 
the predicted values when wavelet channels are used 

for frequency channels

A)

B)
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is close to human physiology. As we intended to 
have both advantages of speed and low RMS error 
for the rest of the article we have used DoS CSF 
along with wavelet channels. Although using LSI 
will lead to a little decrease in model error, as it 
will be shown later, it causes a tangible increase in 
execution time of our model (Figure 11).

Investigation into Channels

As we mentioned earlier in this study we used 
six types of frequency channels listed below. along 
with these six channels we compared Retina-V1 
model, the latest model on this dataset, as well [6].
 • Gabor Filters (used by [36, 43])
 • Wavelet filter bank (DWT) (used for the first time)
 • Wavelet packets (used for the first time)

 • Real DT-CWT (used for the first time)
 • Complex DT-CWT (used for the first time)
 • BWT (used for the first time)

In using wavelet two significant and essen-
tial points should be considered. The first point is 
decomposition level which displays the level of 
model’s complexity. Another point is the mother 
wavelet selected that specifies the fundamental 
kernel for filter bank [32, 33]. By obtaining RMS 
error for 16 diverse mother wavelets and 4 decom-
position levels we realized that the least error is 
acquired by using “Bior 6.8” as the mother wave-
let and three levels of decomposition. Since other 
types of wavelet based channels have nearly the 
same principle as the wavelet filter bank [19], we 
used the same configuration for other types.

 
Fig. 7. Comparison of 11 CSFs including Dos which we introduced. (A) displays RMS error for NO channel 

model. (B) depicts the RMS errors when wavelet channels and FIAP were used

Fig. 8. DoS along with LSI and HPmH CSF after optimization. As it can be seen all these three CSFs resemble 
Human contrast sensitivity function
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By simulating the six aforementioned fre-
quency channels types using FIAE and the men-
tioned configuration for wavelet based channels, 
we got the results shown in Figure 10. Based on 
this observation, Gabor filters have the least er-
ror among other types, wavelet channels are the 
second and wavelet packets are the third one. It 
should also be noted that the Retina-V1 model has 
the highest error among the others. 

According to this result (Figure 10) one may 
pose the question that why we need wavelet chan-
nels when Gabor filters has the least RMS error. 
To answer this question, first we have to show tim-
ing performance of the model in various configu-
rations. Figure 11 depicts runtime performance of 
the 15 model configurations. In this investigation, 
we first allowed the models (model configurations) 
to be optimized by trying to find minimum error 
using the previously mentioned algorithms. Then, 
we ran the models for all 43 stimuli, and at the 
same time, we measured the execution time using 
the built in MATLAB® function “tic, toc”. Accord-
ing to Figure 11B runtime performance of Gabor 
filters is so poor in comparison with other types 
of channels especially wavelet channels, which has 
the least runtime after the no channel model.

For a better illustration of this matter, we 
display timing performance alongside error 
performance (Figure 12). Despite the fact that 
LSI has the best error performance between 
other CSFs, DoS has simultaneously good er-

ror ratio and timing performance (Figure 11), 
and 11 free parameters of LSI that should be 
determined, which increased model complex-
ity considerably, made us to use DoS as CSF 
for further investigations, such as Figure 12. 
According to Figure 12, although Gabor chan-
nels with 0.81 dB (SD = 0.005) error has the 
least RMS error amongst the others, 0.15 dB 
lower than wavelet channels, wavelet channels 
has a significant timing advantage over Gabor 
filters. Wavelet filters’ runtime is 1.01 seconds, 
which is about 20 times faster than Gabor fil-
ters. This disadvantage of Gabor channels, ac-
cording to Watson & Ahumada [43], give rise 

Fig. 9. Obtaining model RMS error by simulating 16 diverse mother wallet and four decomposition levels

Fig. 10. Error performance of six wavelet configura-
tions alongside no channels and Retina-V1 model
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to the omission of channels in practical mod-
els. This means that because of the complex-
ity and slowness of Gabor filters, the mainstay 
of model which is necessary for implementing 
FDAE, and therefore, further decrease in RMS 
error has to be omitted. In contrast, using wave-
let channels, which has the vital advantage of 
speed along with having the least error after 
Gabor filters, will allow us to add FDAE to the 
model, and eventually, it leads to a much more 
realistic model with as yet lowest RMS error. 
Thus, owing to the advantages and good perfor-
mance of wavelet channels, it was chosen for 
modelling the channels part of model.  

Another notable matter is that as Figure 12 
depicts, Retina-V1 Model, in spite of its nearly 
similar structure to V1, has both poor error and 
especially timing performance compare to the 
other model configurations.

Aperture Effect and Introducing FDAE to 
the Model   

In this part, first, we investigated the rela-
tion between aperture size (σ) and summation 
exponent (β). Using FIAE with no channels 
and allowing the aperture size (σ) to vary when 
summation exponent is fixed in specific range 

 
Fig. 11. (A) Model’s RMS error for five types of frequency channels alongside three types of CSF. (B) Runtime 

of model for 15 different configurations

Fig. 12. Timing performance of channels alongside error performance



Advances in Science and Technology Research Journal  Vol. 10 (30), 2016

62

between 2 and 3, we measured the RMS error 
for each fixed summation exponent value. Ap-
erture size will be then determined, when the 
model reaches the lowest achievable minimum. 
According to [27] study on effect of eccentric-
ity on contrast sensitivity, aperture effect will 
cause sensitivity to decrease by 0.5 dB/cycle, 
but more recent studies change these classic re-
sults. The investigations in [1, 2] maintain that 
the sensitivity decrease by about 1 dB/cycle. 

The lowest RMS error will be attained when 
β is 2.4 (Fig. 13A). With this β, the aperture size 
is 0.51. This leads to 6.02 dB decline in 0.58 
degree, and it conforms to Baldwin & et al. [1, 
2] result in 10.38 cycle/degree. The obtained 
result seems to be plausible, since here we used 
FIAE, which consist of only one Gaussian as 
the aperture effect, and the frequency range is 
0 to 60 cycle/degree, so the 10.38 cycle/degree 
falls within the frequency range.

Contrary to Watson & Ahumada model 
[43] which includes slow and complex Gabor 
filters that prevented them from investigating 

the relation between aperture size (σ) and sum-
mation exponent (β) when channels exist, here 
by using wavelet channels we are able to per-
form the same study on relation between β and 
σ, when channels exist. On the basis of Figure 
13B, it can be seen that error will be minimum 
when β is around 2.4 and the corresponding σ 
will be 0.63 degree (SD = 0.003). Using the 
same calculation as above and based on [1, 2] 
result, the equivalent frequency will be 8.1 cy-
cle/degree. This result seems perfectly reason-
able because level-3 wavelet channels mostly 
focus on first quarter of frequency band (0 to 
15 cycle/degree) and based on wavelet coef-
ficient, most of the information is in the first 
quarter. Hence, it can be anticipated that aper-
ture size will try to reach the middle point (7.5 
cycle/degree) of this part of frequency band for 
highest effectiveness. 

Ultimately, we aimed to add FDAE to the 
model. Since we chose level three wavelet de-
composition, there would be four distinct cir-
cular frequency bands. As a result, we used 

Fig. 13. This curve depicts the relation between aperture size and summation exponent. Other conditions: no 
channels and FIAE(A) and wavelet channels and FIAE(B)
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four Gaussians, each of which is applied to one 
of the frequency bands. Each Gaussian has an 
aperture size σ separated from the other ones, 
and they are free to vary during optimization 
phase. Then we permitted the model to be 
optimized using the dataset to reach the least 
RMS error, and at last we obtained a result that 
lends credence to the accuracy of our model. 
Starting from a same value, the aperture sizes 
reach 0.14 (SD= 0.003), 0.23 (SD= 0.006), 
0.505 (SD= 0.002), and 1.47 (SD= 0.004) de-
grees at the end of the optimization phase. The 
corresponding frequencies to these aperture 
sizes ,based on [1, 2] result, are respectively 
38, 22.3, 10.1, and 3.5 cycle/degrees. This re-
sult completely conforms to both physiology 
and models assumption. First, based on dis-
crete wavelet transform concept, the frequency 
bands from low to high band are 0-7.5, 7.5-15, 
15-30, and 30-60. It is conspicuous that all of 
the aforementioned frequencies are within the 
corresponding wavelet frequency bands, and 
they are almost at the middle of them. Second, 
the aperture size of frequency bands of high-
er frequencies is lower than frequency bands 
of lower frequencies. This shows that in high 
frequencies bands the rate of decline in sensi-
tivity by increase in frequency is much higher 
than low frequencies bands. From the physi-
ological point of view, human eye has lower 
sensitivity in high frequencies and our result is 
completely consistent with this phenomenon. 

The last but not least result is that using 
FDAE has a significant impact on error. As 
Figure 14 clearly shows, using FDAE with 
wavelet channels decreases RMS error by 0.17 
dB, so the model RMS error would be 0.68 
(SD= 0.004) which is the hitherto lowest er-
ror that a model has achieved in literature. An-
other important matter is that as it can be seen 
there is no point regarding Gabor channels and 
FDAE. This is because as we pointed out ear-
lier due to slowness and complexity of Gabor 
channels, it is almost practically impossible to 
use a set of apertures, whose σ is free to vary, 
along with Gabor channels. In contrast, using 
wavelet channels which have the advantage of 
speed and simplicity as well as accuracy al-
lowed us to use FDAE, which eventually leads 
to a model with the as yet least RMS error.

Figure 15 shows the model predicted val-
ues and contrast threshold simultaneously, 

alongside errors for each stimuli. These pre-
dicted values are for final model with a com-
plete set of components including, contrast im-
age converter, DoS CSF filter, oblique effect, 
wavelet channels, FDAE, and pooling.

DISCUSSION

Channels

One of the noteworthy points here is why we 
used wavelet channels in the first place. First, un-
like conventional filter banks (for instance Gabor 
filters) wavelet filter bank only needs to design 
two filters. This advantage would be better un-
derstood, by considering that the Gabor filters 
that was used in [36, 43] needs 88 filters to be 
designed. Although neurons in the primary visual 
cortex are widely believed to form the substrate of 
psychophysical spatial frequency channels, and 
that the spatial receptive field structure of these 
neurons is often described with a Gabor function 
[10, 17], what will be the benefit of this channels 
if it should be omitted for practical uses due to 
slowness and complexity? On the other hand, 
using wavelet channels will help us not only by 
lowering the number of filters to be designed, 
but also by preserving the mainstay of the model 
(channels). This gives us a chance for further im-
proving and adding new features such as FDAE, 
which we introduced here. 

The second advantage of using wavelet 
channels is that its output size has the same 
size as its input. This will become much more 

Fig. 14. The effect of adding FDAE on error when 
wavelet channels are used. Using Gabor channels 
prevent us from adding FDAE to model due to the 

complexity and slowness of model
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important when timing performance is a signif-
icant aspect of the model. To shed light on this 
matter, consider that we have a Gabor filter ar-
ray with only ten frequency bands, which will 
lead to 256×256×10=655360 pixels for output, 
if we assume input size is 256×256 pixels and 
circular convolution is used for filtering opera-
tion (by using conventional convolution more 
output pixels will be produced.). In contrast, 
in the same situation, wavelet filter bank by 
using a particular algorithm which decreases 
the output size, and at the same time it avoids 
aliasing. Consequently, it has only 256×256 
pixels for output, which is ten times as low as 
Gabor filters output. Using down sampling for 
reducing output pixels of Gabor channels, not 
only arises the aliasing problem, but it is also 
not as efficient as wavelet channels. 

One more notable matter is that using chan-
nels causes a reduction in error, especially in 
stimuli number 35 and 43 (Figure 5). On the ba-
sis of Figure 16, both of these stimuli are wide 
bands. This can be well justified by the fact that 
these stimuli have a large coefficient in all fre-
quency bands. This considerable error reduction 
compared to other stimuli seems to be because 
of a more efficient pooling. It means that using 
wavelet channels causes the pooling stage to act 
much more efficiently for wide band stimuli than 
when we do not use it.

Another important point is that despite the fact 
that BWT is more physiological based Wavelet, it 
is not as accurate as Gabor filters. Moreover, con-
trary to wavelet channels, this type of channels 

has a poor timing performance. Thus, a channels 
type with the efficiency of wavelet channels, ac-
curacy of Gabor channels and physiology basis of 
BWT is desirable. One of the things that can in-
spire a new channels type is the way that GCRFs 
work. In this channels type an array of GCRFs 
with multitude of sizes and positions can be uti-
lized. So much like the mosaic samp(x) function 
represented by Retina-V1 model [6], although it 
needs much better timing performance to be able 
to be compared with Wavelet channels in practi-
cal uses.

Contrast sensitivity filter

Here we will mainly discuss why DoS has 
better timing and error performance than HPmH 
and LSI. First, HPmH consists of subtracting two 
sech functions from each other, and each sech 
function is comprised of two exponent function 
as it is shown in equation 9.

(9)

Conversely, the DoS CSF, we introduced 
here, consists of two sigmoid functions and 
each sigmoid function only has one exponent 
function, so in the long run it would be rational 
that DoS will have better timing performance 
than HPmH.

(10)

Fig. 15. shows the predicted values (red dots) alongside threshold values (blue dashed line) and error (black solid 
line) when FDAE is added to model with wavelet channels
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Another important fact is that having two 
more free parameters to vary during the opti-
mization phase than HPmH, makes DoS more 
flexible, so it will have slightly better perfor-
mance when channels are added to the model. 
Thus, it causes a more reduction in error. In 
contrast, although LSI CSF leads to a little 
more decline in error, its 11 free parameters 
which are to be determined impose a superflu-
ous complexity on model. Thus, use of DoS 
lead to a much more efficient model.

Aperture effect

One of the main impetuses of conducting 
this research was to introduce FDAE into previ-
ous models. Therefore, we tried to replace pre-
vious models’ inefficient and complex Channels 
with a more expeditious one, so it can encom-
pass frequency channels for practical models 
and more complex investigations. After using 
wavelet channels as a more preferable choice for 
frequency channels, on the basis of its advan-
tages, we add FDAE to the model which results 
in a great reduction in RMS error. There are two 
main reasons for such decrease in error.

First, adding four Gaussians with free σ (ap-
erture size) to vary instead of one (as it was in 
FIAE) will make our model much more flex-
ible. More flexibility will provide our optimiza-
tion algorithm a better chance of finding lower 

minimum which is closer to global minimum, 
and therefore it decreases RMS error. Second, as 
Robson & Graham [27] claimed in their article, 
high frequency components will pass through 
smaller aperture and low frequency component 
pass through larger aperture. Therefore, us-
ing one aperture (as FIAE) oblige the aperture 
size parameter to somehow stay in the middle 
of the range, and this nearly compulsory value 
will cause error to increase in stimuli with high 
frequency components which need smaller ap-
erture, and stimuli with low frequency compo-
nents which need larger aperture. On the other 
hand, using several apertures with free sizes to 
vary, will prevent error from increasing due to 
mentioned process. Thus, based on two afore-
mentioned reasons, it is plausible that not only 
does adding FDAE make our model closer to 
reality, but it also reduces error and makes our 
model more accurate.

Pooling Stage

In this study, for the purpose of comparison 
we used the same pooling method used by almost 
all of the previous analyses, termed as Minkowski 
Pooling. Despite its advantages such as simplicity 
and implementing several models including peak 
detection, energy summation, and probability 
summation with only one formula, it has a serious 
disadvantage which should be noted. By replac-

  
Fig. 16. Level-three discrete wavelet decomposition of two stimuli is shown. (A) shows the wavelet coefficient 
for stimulus number 35 and (B) shows coefficients for stimulus number 43. Both pictures justify the fact that 

both of these stimuli are wide band, since they have many large coefficient (intense and bright lights) in all fre-
quency bands
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ing equation 5 in equation 6 the resulting equa-
tion would be equation 12. This equation clearly 
shows that contrast threshold will be obtained by 
summing all processed pixels after channels rais-
ing to the power β and then the result of this sum-
mation to the power of  . Thus, most of channels’ 
effect would be canceled due to similar summa-
tion of all output pixels. Consequently, channels 
will have much less effect on error reduction as it 
should have.

(11)

Alternative decoding rules that decodes the 
responses of visual mechanisms in other ways 
have been considered in [9], analytically in 
[13] and implicitly in [21], but of course, not in 
a practical model of contrast detection and on 
ModelFest dataset. Be that as it may, considering 
the quality of our cross validation fit, popularity 
among prior models and our interest and attempt 
to avoid unnecessary complexity encouraged us 
to use Minkowski pooling. Testing new pooling 
methods in this model, requires a comprehensive 
and distinct investigation, since the effect of this 
new pooling stage on different parts of the model 
including aperture size, mother wavelet and de-
composition level, and the efficiency of model 
should be determined. Thus, it is out of the scope 
of this study.

CONCLUSION 

In this study, we mainly tried to present a new, 
more accurate and efficient model of contrast detec-
tion, based on previous models and especially the 
model presented in [43]. We showed that on the ba-
sis of the ModelFest dataset, this model can reach 
RMS error as low as 0.68 (SD= 0.004) as yet low-
est RMS error. Although this model may seem to be 
more complex than the previous ones, because of 
its more complex mathematical basis, by using the 
fast wavelet transform algorithm it would be much 
simpler to be implemented. Thus, the model’s better 
performance is not due to complexity. 

We developed a new and unprecedented 
channel type based on wavelet transform and fil-
ter bank with a number of advantages. The first 
advantage is its simplicity, only two filters have 
to be designed for a multi band filter bank that 
culminate in much more simplicity than conven-
tional filter banks. Second, its output is computed 

much faster than Gabor filters, and thus, it is a 
better choice than Gabor filters. Third, the number 
of output pixels is almost the same as input, with-
out any further need for separate down sampling, 
while this down sampling is needed for chan-
nels like Gabor filters that eventually will lead to 
aliasing problem if it is used without precautions. 
Last but not least, contrary to Gabor filters which 
forced the omission of the channels from model 
in practical uses, due to the above mentioned ad-
vantages, wavelet channels help us to preserve 
channels as the mainstay of the model for adding 
FDAE and further decrease in RMS error. 

We introduced new frequency dependent ap-
erture effect termed as FDAE into the model. Not 
only does the model become much closer to re-
ality, but also a considerable decline in error by 
0.17dB can be achieved. In addition to making 
our model more accurate, using this along with 
using wavelet channels that provide us speed 
privilege, give us a chance to use this model for 
physiological purposes that need accuracy and 
real-time processing such as retina implants and 
prostheses.

 Lastly, we introduced DoS as a new CSF 
which performs better than all other CSFs, in 
terms of error and timing performance. This 
means that this CSF can be used in wider range 
of future practical models due to its better per-
formance.
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